Exercises

- 1. Show the following: A set $X \subseteq \mathbb{R}$ is open if and only if for every sequence x_n converging to $a \in A$, $x_n \in A$ for n sufficiently large.
- 2. Let $X \subseteq \mathbb{R}$ be open. Show that if $a \in \mathbb{R}$, then a + X is also open, where $a + X = \{a + x; x \in X\}$.
- 3. Show that $\operatorname{int}(X \cap Y) = \operatorname{int}(X) \cap \operatorname{int}(Y)$, but in general $\operatorname{int}(X \cup Y) \neq \operatorname{int}(X) \cup \operatorname{int}(Y)$. Given an example which illustrates the latter fact.
- 4. Let A be open and $a \in A$. Show that $A \{a\}$ is open as well.
- 5. Show that every collection of nonempty open sets, pairwise disjoints, is countable.
- 6. Show that the set of accumulation points of a sequence is closed.
- 7. Let C be closed and $X \subseteq C$. Show that if C is closed then $\overline{X} \subseteq C$.
- 8. If $\lim x_n = a$ and $X = \{x_1, x_2, \ldots\}$, show that $\overline{X} = X \cup \{a\}$.
- 9. Let I be a closed interval and suppose $I = A \cup B$, where A, B are closed and disjoints. Show that either A = I or B = I.
- 10. Show that $\frac{1}{4}$ is an element of the Cantor set K. [Hint: Convince yourself that $\frac{1}{4}$ is an accumulation point]
- 11. Let $X \subseteq \mathbb{R}$ be countable. Construct a sequence whose accumulation points is the set \overline{X} . Use this to show that every closed set is the set of all accumulation points of a sequence. [Hint: Write \mathbb{N} as a countable union of infinite disjoints subsets.]
- 12. Let K denote the Cantor set. Show that $[0,1] = \{|x-y|; x, y \in K\}$. [Hint: Use the fact that proper fractions whose denominator are power of 3 are dense in [0,1].]
- 13. Given any $\alpha > 0$. Show that we can find elements x_1, x_2, \ldots, x_n of the Cantor set such that $\alpha = x_1 + x_2 + \ldots + x_n$. [Hint: Use exercise 12.]
- 14. Show that $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$, but in general $\overline{X \cap Y} \neq \overline{X} \cap \overline{Y}$. Given an example which illustrates the latter fact.
- 15. Give an example of nested sequence $F_1 \supset F_2 \supset \ldots$ of closed nonempty sets such that $\bigcap_j F_j = \emptyset$.
- 16. Show that a set X is dense in \mathbb{R} if and only if X^c has empty interior.
- 17. Give an example of open set A such that $\mathbb{Q} \subseteq A$ and $\mathbb{R} A$ is uncountable.
- 18. Given an example of an uncountable closed set containing only transcendental numbers. [Hint: Use exercise 17.]

- 19. Given a nonempty set $X \subseteq \mathbb{R}$ and point $a \in \mathbb{R}$, we define the distance of a to X as the number $d(a, X) = \inf\{|x a|; x \in X\}$. Show that
 - 1. $d(a, X) = 0 \iff a \in \overline{X}$
 - 2. If X is closed then we can find $b \in X$ such that d(a, X) = |a b|
- 20. Show that if X is bounded from above then \overline{X} is as well. Moreover, show that $\sup X = \sup \overline{X}$. Prove the equivalent result for $\inf \overline{X}$.
- 21. Show that if X is bounded then $\sup X$ and $\inf X$ are adherent points.
- 22. Show that for every $X \subseteq \mathbb{R}$, the derived set X' is closed.
- 23. Show that a is an accumulation point of X if and only if it is an accumulation point of \overline{X} .
- 24. Show that $(X \cup Y)' = X' \cup Y'$.
- 25. Let $X \subseteq \mathbb{R}$ be an open set. Show that every point of X is an accumulation point of X.
- 26. Let $X \subseteq \mathbb{R}$ be a closed set and $a \in X$. Show that a is an isolated point if and only if $X \{a\}$ is closed.
- 27. Explain the meaning of the following sentences. You can't use the words in *italic* in your explanation.
 - (a) $a \in X$ is not an interior point of X;
 - (b) $a \in \mathbb{R}$ is not an adherent point of X;
 - (c) $X \subseteq \mathbb{R}$ is not an open set;
 - (d) $X \subseteq \mathbb{R}$ is not a closed set;
 - (e) $a \in \mathbb{R}$ is not an accumulation point of X;
 - (f) $X' = \emptyset;$
 - (g) $X \subseteq Y$ but X is not dense in Y;
 - (h) $int(\overline{X}) = \emptyset;$
 - (i) $X \cap X' = \emptyset$;
 - (j) $X \subseteq \mathbb{R}$ is not a compact set;
- 28. (Lindelof Theorem) Let $X \subseteq \mathbb{R}$. Any open cover of X has a countable subcover.
- 29. Let $X \subseteq \mathbb{R}$ be an infinite closed countable set. Show that X has infinitely many isolated points.
- 30. Show that every real number is the limit of a sequence of pairwise disjoint transcendental numbers.

- 31. Show that if X is uncountable then $X \cap X' \neq \emptyset$.
- 32. Obtain an open cover of \mathbb{Q} that doesn't have a finite subcover. Do the same for $[0, +\infty)$.
- 33. Show that the following are equivalent:
 - (a) X is bounded;
 - (b) Every infinite subset of X has an accumulation point (which could be outside X);
 - (c) Every sequence $x_n \in X$ has a convergent subsequence.
- 34. (Baire Category Theorem) If X_1, X_2, X_3, \ldots are closed sets with empty interior, then their union $\bigcup_{j=1}^{\infty} X_j$ has empty interior. [Hint: Use the idea of the proof of theorem 96 from the notes]
- 35. Show that \mathbb{Q} is not the intersection of a countable collection of open sets.
- 36. Let $X \subseteq \mathbb{R}$. Show that if X is uncountable then X' is also.
- 37. Show that for any $X \subseteq \mathbb{R}$, the set $\overline{X} X'$ is countable.
- 38. A point $a \in \mathbb{R}$ is called *condensation point* of X, when every open interval containing a, contains uncountable points of X. Let X_c denotes the set of all condensation points. Show that X_c is a *perfect set*, i.e. closed with no isolated points, and that $X X_c$ is countable.
- 39. (Bendixson theorem) Every closed set $X \subseteq \mathbb{R}$ can be written as a union of a perfect set and a countable set. [Hint: Use the exercise 38.]